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Abstract 

Dens$cution processes in rigid dies are considered. 
The behaviour of’ the powder products with inclined, 
curve and stepped surfaces is studied. The injuence 
qf u pressing cvclogram on the distribution of resid- 

ual porosity is investigated. The analysis is based on 
the plane cross-section method. In the capacity of 
the procedure, promoting an optimization of’ dens@ 
cution, the subdivision qf‘ un article into separuted 
elements pressed by d@rent punches is used. For 
components with inclined surfaces, on the busis of 
the density distribution required for the final prod- 
uct the most relevant methods of’ this subdivision 
are pointed out. 0 1996 Elsevier Science Limited. 
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Dimension of the characteristic cross-sec- 
tion in the horizontal direction 
Volume change rate (the first invariant of 
the strain rate tensor) 
ith component of the strain rate tensor 
Initial height of the nth part of a charac- 
teristic cross-section 
Final height of the nth part of a character- 
istic cross-section 
Billet’s size in the perpendicular to a char- 
acteristic cross-section 
Mass of powder 
Time 
Lower punch velocity 
Upper punch velocity 
Equivalent strain rate 

direction 

Expression for the contour limiting the 
characteristic cross-section at the bottom 
Expression for the contour limiting the 
characteristic cross-section at the top 
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Shape change rate (the second invariant of 
the strain rate deviator) 
Generalized viscosity coefficient 
Density of a powder volume 
Equivalent stress 
ith component of the stress tensor 
Functions of density p and being analogies 
of the shear and bulk viscosity moduli for 
porous material 

Introduction 

The finite’ 4 and permeable element methodP are 
dedicated for the solution of boundary-value prob- 
lems concerning working by pressure of powder 
ceramic and metal components in order to optimize 
the conditions of shape forming and densification. 

These methods in their expanded form are 
rather labour-consuming ones, requiring quite a 
long computation time. This lends impetus to the 
development of simpler and more pictorial meth- 
ods of modelling based on the analysis of situa- 
tions appearing in real technologies. It should 
be noted that possible simplified methods do not 
represent an alternative to global ones. Moreover, 
they can be used for control analysis accompany- 
ing the application of one of the above-mentioned 
methods. 

The method of accelerated modelling, based on 
the hypothesis of plane cross-sections and being 
attendant to the permeable element method, is 
proposed in the present work. 

Characteristic Cross-Section of a Complex-Shape 
Article: Cyclogram of Pressing 

In order to optimize the production of a complex- 
shape article, the following procedure is used. 



If the article has no symmetry elements, if it is not a 
body of rotation or a plane one, then such a cross- 
section is built, whose upper and lower boundaries 
have the largest deviation from the plane perpen- 
dicular to the pressing direction (Fig. 1). 

The cross-section is subdivided into elements by 
lines which are parallel to the above-mentioned 
direction. These lines should correspond to the 
places with largest curvature of the article. If the 
article has steps, then the lines should separate 
them. The possibility of pressing each element of the 
volume by a separate punch, moving in accordance 
with a special law, is supposed. Such cross-sections 
are termed characteristic. Articles of particular 
complex shape can have several characteristic 
cross-sections. For bodies of rotation, the charac- 
teristic cross-section coincides with an axial one. 

For the determination of the initial product con- 
figuration and pressing mode, consider only one of 
the characteristic cross-sections. The choice of the 
initial configuration is carried out on the ground of 
the requirement of proportionality of the heights 
of different elements of the initial product to the 
heights of the same elements for the final product 
after pressing. Therefore, if the article is subdi- 
vided by separating lines into N elements, and the 
kth element should have the final height /z,~ and 
density prx, then its initial height is determined: 

where pj is a density of the initial product. Reason- 
ing from a certain article shape, other principles of 
determination of the initial product’s height are 
possible. In the above-mentioned formula (I), h, and 

imtial configuration 

\ 

h, represent an average height of the layer, if the 
contour of the corresponding element is not plane. 

A pressing scheme is determined by functions 
hk(t) being varied in the interval [h,,h,]. A graphic 
representation of all such functions combined in 
one single frame of reference, where the process 
time is plotted as abscissas and the values of h,(r) 
as ordinates, is a cyclogram of pressing. 

The procedure of building a cyclogram of press- 
ing is demonstrated (Fig. 2) for the stepped article 
shown in Fig. 3. 

With the availability of the relevant equipment, 
the scheme is realized, providing the proportion- 
ality of the velocities of movement of the punches, 
corresponding to the different elements of the 
article’s volume, to the current heights of these 
elements. It will be shown below that this scheme 
provides uniformity of density distribution in the 
radial direction for stepped articles. In this case, 
the velocities of the punches are different, which 
is manifested by different slopes of the corre- 
sponding lines in Fig. 2. 

If there is no possibility to provide the above- 
mentioned scheme with proportional punch move- 
ments, the scheme with consequent pauses can be 
used. Here, instead of the requirement of the propor- 
tionality of the punch velocities to their current 
axial coordinates, the condition of the proportion- 
ality of the initial and final billet heights is applied. 
However, in this case, all the punches move with 
an equal velocity, but not simultaneously. 

The procedure of building a pressing cyclogram 
with consequent pauses consists of the following 
(Fig. 4). The frame of reference is built, where the 
conventional time of the process T is plotted as 

final configuration 
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Fig. 1. Subdivision of a characteristic cross-section into elements. 
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A parallelism of the inclined segments testifies that 
the velocities of the movement of corresponding 
punches are equal. Along with this each punch 
starts the movement after the nth punch passes 
some definite ordinate. Its value is determined as a 
coordinate of the vertex point of the cyclogram. 

Fig. 2. Cyclogram of pressing, 

abscissas, and the values of the element heights, as 
ordinates. Then, at the corresponding point on the 
abscissa, a perpendicular is erected, on which the 
values of the final heights of the article parts con- 
sidered are plotted (Fig. 4). The initial height val- 
ues, determined by formula (l), are plotted as 
ordinates. The points /z,~ and I’+ corresponding to 
the initial and final heights of the article’s nth part 
pressed without a pause, are connected by a straight 
line. At each point I!, a straight line is built, 
which is parallel to the line h,-h,, until it inter- 
sects with a line built at h, and being parallel to 
the abscissas. 

Flow under Plane Deformation: Semi-analytical 
Solution for the Field of Velocities 

The analysis of the flow of densified material in a 
characteristic cross-section is carried out based on 
the assumption that the velocity component in the 
direction, which is perpendicular to the plane of the 
characteristic cross-section, is much smaller than 
other components and its value can be identified 
with zero. This assumption permits the consideration 
of the evolution of the characteristic cross-section 
state in the framework of plane deformation ideas. 

The analysis is carried out, using the expressions: 

y1 = d(e\- - eJ2 + 4e.tj (2) 
7-I = + (a, - a,)* + 47&, /II = ;(a, + q) 

Then the equivalent strain rate and stress can be 
expressed as follows: 

die punches 

a /‘ktial product final product / k 

Fig. 3. Schematic of pressing of a stepped article. 
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Fig. 4. A pressing cyclogram. 

and the scalar constitutive equations will be: 

Stress and strain rate components are connected 
by the relationships: 

2 
g, = ;cc + ,cp)C.Y + ($ - f@J 

cJ,. = ;(G + +, + ($- +G) 

The equations of quasistatics have the form: 

aa, ; %YJ _ () -- 
ax ay 

(6) 

(7) 

(8) 

(9) 

The plane cross-sections method is based on the 
supposition that the axial component velocity v,. 
is a linear function of y, and the perpendicular 
component V, does not depend on y. The forego- 
ing means that the vertical cross-sections are kept 
vertical even after deformation. 

Let 

4’ = Ylw); Y = Y2(-%0 (10) 

be the equations of the parts of a contour limiting 
the characteristic cross-section at the bottom and 
at the top, respectively. 

The use of time as an argument of both func- 
tions characterizes a possibility of changing the 

contour with time both owing to the punches’ 
displacement as a whole and on account of the 
displacements of separated punches in the case 
when an autonomous movement of the press- 
elements is possible. 

Let V7(.~,t) and V,(_u,f) be the velocities of the 
upper and the lower punches, respectively. Then, due 
to the hypotheses of the plane cross-section method: 

and 

where c,, is the strain rate in the direction y. 
Thus, the axial components of the displacement 

and deformation rates turn out to be known. They 
are completely determined by the functions y,, J’?, 
I’,, Vz, which, in turn, are calculated on the basis 
of a pressing cyclogram. 

The shear component of the strain rate is also 
known: 

i av. 
e,,. = -2 

2 ax (13) 

The transfusion velocity V, as well as the density 
p are the unknown sought values. 

For pressing in rigid dies, the kinematic bound- 
ary conditions: 

VUl.X=O = I/,/,=,, = 0 (14) 

The plane cross-section method gives the following 
expression for the velocity component I’, (due to 
the solution of eqns (9) taking into consideration 
eqns (2)-( 13) and the boundary conditions (14)): 

where cp and $ are the functions of density p, 

being the analogies of the shear and bulk viscosity 
moduli for porous material; q* is the generalized 
viscosity coefficient, n* = FW; a is the dimension of 
the characteristic cross-section in the horizontal 
direction. 

The analysis of expression (15) shows that V, 
depends on the deformation scheme (e?), on the cur- 
rent density distribution (cp and $), and on the rheol- 
ogy of the matrix phase (r]*). In order to determine 
the influence of the rheological properties, the sec- 
ond item in the right-hand part of eqn (15) can 
be considered. It follows from (6) that the product 
~*(I,!J +f3(p) is proportional to the axial stress and it 
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5 7 9 

Element number 

-O-initial heights -I- Final heights 

-Q-final density distribution -)_ Initial density distribution 
, 

Fig. 5. Calculation results for pressing the stepped article by split punches. 

follows from (8) that q*‘p is proportional to the 
tangential stress. The latter is determined by the 
friction resistance of the vertical powder layers. 

The Continuity Equation for the Plane 
Cross-Section Method 

The stress caused by the internal friction is 
much smaller than the externally applied one. 
Therefore, the item, whose order of magnitude is 
kk is much smaller than the first item in the 
right-hand part of eqn (15). 

From the foregoing it follows that the rheologi- 

Let M be the mass of powder, enclosed by the left 
boundary of the article and an arbitrary cross- 
section x. Then: 

M(x,t) = I I:ph(x,t)dx (16) 

cal properties of the solid phase have no signifi- 
cant influence on the transfusion velocity. 

Also, the analysis of eqn (15) shows that the pow- 
der transfusion has a place when the product e$$ 
changes going from one cross-section to another: 

where I is a billet’s size in the perpendicular to the 
characteristic cross-section direction, and h(x, t) = 

Y2-Yl. 
In accordance with the mass conservation law: 
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Element number 

/ -O-initial heights + Final heights 
- 

2 

.- 
-O-final density distribution + Initial density distribution / 

Fig. 6. Calculation resuits for pressing the stepped article by a single punch 

&If The Condition of the Attainment of a Uniform -__ II 
at 

- v&?/2 (17) Density Distribution 

Equation (17) can be represented in the following 
form: 

In general, (18) can be considered as a differential 
equation relatively ph. Its solution can be obtained, 
if Yy is known. 

Thus, the combined solution of eqns (15) and 
(18) permits the determination of the transfusion 
velocities and distribution of residual density. 

The problem of powder transfusion is connected 
with another important problem - the possibility 
of provision at each time moment of the com- 
pletely controlled and, in particular, uniform ver- 
sus x density distribution. It turns out that its 
solution is attained only in absence of the transfu- 
sion flow. Indeed, in this case, it follows from 
(18) that 

(19) 
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Fig. 7. Calculation results for pressing the article with a stepped-inclined surface. 

Choosing corresponding p,(x), hi(x) and h(x,t), any 
predetermined value of p(x,t) can be obtained. 
However, for an arbitrary p,(x) the deformation 
scheme should be chosen such that at any moment 
of time the product yig does not depend on X. 
This is possible only under correction of the press- 
ing scheme by a ‘feed back’ principle: on the basis 
of the density distribution control. 

This procedure is simplified if p,(x) is a constant 
value. Then for the pressing scheme, providing: 

KG 0 = h;(x)f(t) (20) 

wheref’(t) is some arbitrary function of time, den- 
sity is a constant at each moment of time. This con- 

dition also provides a zero value of the transfusion 
velocity. The result obtained can be formulated as 
following: for production of the complex-shape 
article with density distributed uniformly at each 
moment of pressing, the initial density should be 
distributed also uniformly and axial deformation 
velocities of different elements of the article’s vol- 
ume should be proportional to the current heights 
of these elements. 

The above-mentioned statement is real only for 
articles with stepped surfaces. For such shape of 
an article, the subdivision of the article’s volume 
into elements with uniform internal distribution of 
density, which are pressed by different punches, is 
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possible. If the article is limited by a curve or an 
inclined surface, this method of pressing does not 
provide a totally uniform density distribution. 
Even the use of the split punches causes a density 
heterogeneity by virtue of the fact that the bound- 
ary contour of some elements is not plane. 

The solution of these problems, however, cannot 
be obtained by semi-analytical methods. Here it turns 
out to be necessary to solve the problem numerically. 

Residual Density Distribution for Pressing in a 
Rigid Die of the Article with Stepped and Inclined 
Sections of Surface 

The results of the calculation of the density distri- 
bution in the stepped article for pressing by split 
punches (for high and low parts of the article) and 
by a single punch are represented in Figs 5 and 6, 
respectively. 

Because of the larger volume deformation, den- 
sity of the lower part is higher than that of the 
lower one in the case of pressing of the articles by 
the single punch (Fig. 6). The results in Fig. 5 cor- 
respond to pressing with preliminary pause for the 
punch for the higher part. For this deformation 
scheme, the displacement of the punch for the 
higher part is 1.6 times more than that for the 
lower part. This pressing scheme permits symmet- 
rical density distribution. 

The results of the calculation for pressing by a 
single punch in the rigid die of alumina powder are 
shown in Fig. 7. The pressed article has a stepped- 
inclined surface. Due to a larger volume deformation, 
the lower part has the higher density. Along with 
this, its density decreases from the periphery to the 
centre of the article because of the material trans- 
fusion into the central part having the smaller density. 

Conclusions 

1. The plane cross-section method, dedicated 
for accelerated modelling of die-wall com- 

2. 

3. 

4. 

paction of complex-shape powder articles, is 
discussed. 
The character of the dependence of the 
transfusion velocities of the deformation 
scheme, current density distribution and rhe- 
ology of the matrix phase is analysed. 
It is shown that the proportionality of the 
velocities of movement of the punches, cor- 
responding to the different elements of the 
article’s volume, to the current heights of 
these elements provides uniformity of den- 
sity distribution in radial direction for 
stepped articles. 
Certain technological problems of pressing 
in rigid dies of complex-shape articles are 
solved. 
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